TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
Breakdown of the TLS_ECDHE_ECDSA_WITH_RC4_128_SHA cipher suite
Cyber Security Rating for TLS_ECDHE_ECDSA_WITH_RC4_128_SHA - D
A
Key Exchange Mechanism
ECDHE (Elliptic Curve Diffie-Hellman Ephemeral) is used because it enhances security through the use of ephemeral keys, which are temporary and unique for each session. This ensures that even if one session's key is compromised, past and future sessions remain secure. ECDHE provides perfect forward secrecy, meaning that the compromise of long-term keys does not affect the confidentiality of past communications. The ephemeral nature of the keys significantly reduces the risk of long-term data breaches and enhances the overall robustness of the cryptographic protocol.
A
Authentication
ECDSA (Elliptic Curve Digital Signature Algorithm) is used in cipher suites for authentication and integrity verification. Its efficiency in generating and verifying digital signatures makes it suitable for secure communication protocols like TLS, ensuring data confidentiality and integrity during exchanges over networks.
D
Cipher
RC4 should not be used as a cipher due to several vulnerabilities, including biases in its keystream and susceptibility to various attacks such as the Fluhrer-Mantin-Shamir attack. These weaknesses compromise the confidentiality and integrity of encrypted data, making RC4 unsuitable for secure communications in modern cryptographic applications. Deprecated in RFC 7465.
D
Hash
Chosen prefix attacks for SHA1 are feasible at an accessible cost to a well-funded adversary. This level of expense, while significant, does not pose a substantial barrier to attackers with sufficient resources, making such attacks a credible threat.
A
Key Size
128-bit symmetric encryption keys are considered secure because they provide an astronomically large number of possible combinations (2^128), making brute-force attacks computationally infeasible with current technology. This level of security is sufficient for most practical purposes and is widely adopted in various encryption protocols.
Web infrastructure owners must ensure they only allow secure cipher suites to protect against potential security threats. Cipher suites determine the encryption algorithms and key exchange mechanisms used in HTTPS connections. Insecure cipher suites can leave data vulnerable to interception, decryption, and manipulation by malicious actors. By restricting to secure cipher suites, owners mitigate risks such as data breaches, unauthorized access, and compromise of sensitive information. This proactive measure helps maintain trust with users, ensures compliance with security standards, and safeguards the integrity and confidentiality of data transmitted over the web.
Contact Stellastra to Secure Your Web Traffic Today