Logo
Sign InSign Up

TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA

Breakdown of the TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA cipher suite

Cyber Security Rating for TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA - D

B

Key Exchange Mechanism

Diffie Hellman Ephemeral-DHE

Diffie-Hellman Ephemeral (DHE) in cipher suites refers to a key exchange method where each session generates temporary, one-time-use (ephemeral) keys. This ensures forward secrecy, meaning if one session's key is compromised, past and future sessions remain secure. DHE provides an added layer of protection against decryption by ensuring keys are used briefly and then discarded, enhancing security in TLS communications.

A

Authentication

Pre-Shared Key-PSK

PSK (Pre-Shared Key) cipher suites are used for authentication in secure communication protocols like TLS. They allow parties to establish a shared secret beforehand, ensuring confidentiality and integrity of data exchanges without the overhead of public key infrastructure (PKI), suitable for constrained environments or specific security requirements.

D

Hash

Secure Hash Algorithm-SHA

Chosen prefix attacks for SHA1 are feasible at an accessible cost to a well-funded adversary. This level of expense, while significant, does not pose a substantial barrier to attackers with sufficient resources, making such attacks a credible threat.

D

Cipher Mode

Cipher Block Chaining-CBC

Cipher Block Chaining (CBC) mode is vulnerable to the Lucky13 and POODLE (in TLS v1.2 and below) attacks. The Lucky13 attack exploits timing discrepancies in padding validation, allowing attackers to gradually reveal plaintext. The POODLE attack leverages padding errors to decrypt ciphertext by repeatedly modifying and sending it to the server, observing the error responses. These vulnerabilities arise from CBC's handling of padding and error messages, making it less secure than modern encryption modes like Galois/Counter Mode (GCM), which offer stronger integrity and confidentiality guarantees.

Web infrastructure owners must ensure they only allow secure cipher suites to protect against potential security threats. Cipher suites determine the encryption algorithms and key exchange mechanisms used in HTTPS connections. Insecure cipher suites can leave data vulnerable to interception, decryption, and manipulation by malicious actors. By restricting to secure cipher suites, owners mitigate risks such as data breaches, unauthorized access, and compromise of sensitive information. This proactive measure helps maintain trust with users, ensures compliance with security standards, and safeguards the integrity and confidentiality of data transmitted over the web.
Contact Stellastra to Secure Your Web Traffic Today

Stellastra The Cyber Security Comparison Platform

© 2024 Stellastra Ltd. All rights reserved. All names, logos, trademarks, et al, belong to their respective owners. No endorsement or partnership is necessarily implied between company and Stellastra and vice versa. Information is provided for convenience only on an as is basis. For the most up to date information, contact vendor directly. Scores including email security, SPF, and DMARC are calculated based on Stellastra's algorithms and other analyses may return different results.

LinkedInTwitter

Company

About StellastraContact usCyber Security Risk ScoreEmail Deliverability ToolTLS Cipher SuitesStellastra Discover

Stay up to date

Stellastra The Cyber Security Comparison Platform